
A Framework for Sample-Based Rendering with O-Buffers

Huamin Qu Arie Kaufman Ran Shao Ankush Kumar ∗

Center for Visual Computing (CVC) and Department of Computer Science
Stony Brook University, Stony Brook, NY 11794-4400

Abstract

We present an innovative modeling and rendering primitive, called
the O-buffer, for sample-based graphics, such as images, volumes,
and points. The 2D or 3D O-buffer is in essence a conventional im-
age or a volume, respectively, except that samples are not restricted
to a regular grid. A sample position in the O-buffer is recorded
as an offset to the nearest grid point of a regular base grid (hence
the name O-buffer). The offset is typically quantized for compact
representation and efficient rendering.

The O-buffer emancipates pixels and voxels from the regular
grids and can greatly improve the modeling power of images and
volumes. It is a semi-regular structure which lends itself to efficient
construction and rendering. Image quality can be improved by stor-
ing more spatial information with samples and by avoiding multi-
ple resamplings and delaying reconstruction to the final rendering
stage. Using O-buffers, more accurate multi-resolution represen-
tations can be developed for images and volumes. It can also be
exploited to represent and render unstructured primitives, such as
points, particles, curvilinear or irregular volumes. The O-buffer is
therefore a uniform representation for a variety of graphics primi-
tives and supports mixing them in the same scene. We demonstrate
the effectiveness of the O-buffer with hierarchical O-buffers, lay-
ered depth O-buffers, and hybrid volume rendering with O-buffers.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Antialiasing; I.3.6 [Computer Graphics]: Method-
ology and Techniques—Graphics data structures and data
types; I.4.10 [Image Processing and Computer Vision]: Image
Representation—Hierarchical

Keywords: Sample-based rendering, image-based rendering, hy-
brid rendering, irregular sampling, hierarchy, offset, frame buffer,
layered depth image

1 Introduction

Sample-based primitives, such as images, volumes and points
have been used widely in visualization. Compared to traditional
geometry-based modeling and rendering methods, sample-based
approaches have the following advantages: (1) they can avoid the
step of explicitly creating a 3D polygonal model for a scene; (2)
they can model objects which are hard to model by surfaces, and (3)
rendering time of a sample-based scene is somewhat independent of

∗e-mail: {huamin|ari|rshao|ankush}@cs.sunysb.edu

the scene complexity. Image-based rendering methods use an im-
age (e.g., a texture, a depth image [McMillan 1997; Popescu et al.
2000], a layered depth image (LDI) [Chang et al. 1999; Lischinski
and Rappoport 1998; Shade et al. 1998]) as the rendering primitive.
All these images are digital, have a finite resolution, and are stored
in a regular 2D gridded buffer. Similarly, 3D volumes, whether
samples of the real world, simulation of a 3D phenomena, or vox-
elization of a geometric model [Kaufman 1987], have a finite reso-
lution and are stored in a regular 3D gridded buffer.

The regular sampling pattern and limited resolution of images
and volumes result in limited position precision for sample points.
This makes conventional images and volumes inefficient in repre-
senting precisely high-frequency details (e.g., edges of 3D objects)
and in handling multiple samples in one grid point. Also, there is
an abundance of irregular samples in computer graphics, such as
point clouds from range scanners, curvilinear and irregular grids
from scientific computations, and samples from adaptive or jittered
sampling for antialiasing. However, regular images and volumes
have accuracy limitation in handling these irregular samples.

As computer graphics primitives diversify, one challenge for
sample-based rendering is how to organize and mix different sam-
ple primitives into one scene and render them in correct visibility
order, especially when volume rendering is involved. Typically, ge-
ometric models, images, volumes, and point clouds represent some
objects in 3D space. Therefore, one may think that a volume repre-
sentation is an ideal framework to represent all these models. How-
ever, when pixels and points are projected back to 3D space, or
when geometric models are discretized, they have to be resampled
into a limited resolution 3D grid. Some information in the original
samples may then be lost.

We believe that the regularity of conventional images and vol-
umes limits their modeling power and might actually be unneces-
sary. For example, some image representations, such as LDI, are
assembled from pictures of the real world. When pixels in these
pictures are warped to a new viewpoint, they no longer fall on a
regular grid. Usually, a resampling process is needed. However,
these representations only serve as intermediate models and are not
used directly for display. Therefore, it is unnecessary for pixels
in these images to be defined on a regular grid. In the past, the
regular pattern of images and volumes was critical for rendering.
However, depth images, layered depth images, point samples, and
volumes can all be rendered by some kind of 3D warping or splat-
ting algorithm [Grossman and Dally 1998; McMillan 1997; Shade
et al. 1998; Westover 1990; Zwicker et al. 2001]. When samples are
projected onto an image display plane, they do not fall on the grid
points, requiring reconstruction and resampling anyway. Therefore,
whether or not samples of the original images and volumes are on
a regular grid is not that important.

To face these challenges, we propose a new modeling and ren-
dering primitive, the O-buffer. The O-buffer is essentially a con-
ventional image or volume, except that samples are no longer re-
stricted to grid points on a regular grid and their position is recorded
as an offset to the nearest point of a regular base grid. The offset
is usually quantized for compact storage and efficient rendering.
Therefore, the O-buffer can represent the position of samples more
precisely without increasing the sampling rate of the image or the

volume, can eliminate the need to have a regular grid for them, and
can serve as a container for intermediate and final results to avoid
multiple resamplings during transformation and to reduce aliasing.
In addition, the O-buffer can naturally be utilized to represent and
render unstructured primitives, such as points, particle systems, and
curvilinear and irregular volumes. Consequently, the O-buffer can
be regarded as a uniform representation for a variety of primitives,
and can thus support the mixing of several different primitives (e.g.,
images, points, and volumes) in the same scene.

O-buffers are related to the concepts of subpixels, subvox-
els, subgrids, and offset buffers, which have been used before,
mostly for antialiasing in geometry-based rendering [Carpenter
1984; Schilling 1991]. The O-buffer, however, is primarily de-
signed for sample-based models. The O-buffer is inspired by the
pioneering work of Popescu et al. [2000; 1999], who used an offset
buffer to resolve the visibility of pixels and for antialiasing pur-
poses in image-based rendering. However, their work is limited to
2D and used mainly for better reconstruction after image warping.
We have used an offset buffer for consecutive warping that resulted
in an IBR method with stable frame rates for a real-time system
[Qu et al. 2000]. Botsch et al. [2002] attached offset attributes
to the samples of their point sampled geometry to guarantee water
tight surfaces.

In contrast, the O-buffer is a general 2D or 3D sample-based
primitive. We have substantially extended the forms and utiliza-
tion of O-buffers. The forms of O-buffers now include 3D O-
buffers, nonuniform O-buffers, adaptive O-buffers, and hierarchical
O-buffers. In addition to using O-buffers to cache 2D intermedi-
ate warping results for better reconstruction and consecutive warp-
ing, O-buffers are used to provide a uniform framework for various
sample primitives, a unified way for hybrid rendering, and more
accurate and flexible level-of-detail management for samples. To
the best of our knowledge, these representations and functionalities
have not been used before.

The main contribution of this paper is the introduction of the
O-buffer as a uniform rendering primitive for sample-based entities
and a unified way for hybrid rendering. Our O-buffer representation
is novel and unique in various ways and has the following features:
Accuracy: The O-buffer can provide much higher spatial precision
for samples than the same resolution images and volumes. Even
though the O-buffer still has a limited resolution, its spatial preci-
sion is often adequate or can be tailored to the application.
Efficiency: Sample position in the O-buffer is encoded as offsets
to an implicitly defined regular grid, thus it is compact compared
to other sample-based representations (e.g., sample lists). The O-
buffer can be warped efficiently by incremental computation. It can
further provide better image quality by avoiding multiple resam-
plings and delaying reconstruction to the final rendering stage.
Semi-regularity: The O-buffer strikes a middle ground between
regular representations (images and volumes) and irregular repre-
sentations (sample lists) for samples. It is a semi-regular structure
which lends itself to efficient construction and rendering.
Uniformity: The O-buffer provides a uniform framework to rep-
resent various irregular and regular sample primitives in computer
graphics, such as images, points, and volumes, and thus support
mixing these primitives in the same scene.
Versatility: The O-buffer is a versatile representation and can be
used to solve a variety of problems in graphics, such as limited res-
olution of images and volumes, antialiasing for surface rendering,
sample caching for image-based or point sample rendering, data
mixing for hybrid volume rendering, irregular sample organization,
and level-of-detail management for samples, to name a few.
Flexibility: Storing more spatial information with samples makes it
possible for O-buffers to store multiple samples in one cell. There-
fore, more flexible and accurate multi-resolution schema can be de-
veloped for images and volumes.

In the next sections, we introduce the O-buffer, and related quan-
tization, data structures, sources, hierarchical structures, and ren-
dering algorithms. Section 6 introduces the layered depth O-buffer
as a case study for nonuniform O-buffers. Section 7 presents hy-
brid volume rendering with 3D O-buffers. Section 8 describes our
experimental results.

2 O-Buffer Representations

The O-buffer is basically a conventional image or volume except
that the sample points in the O-buffer are no longer on a regular
grid. A sample point position is recorded by its offset to the near-
est point in a regular base grid. The base grid can be rectangular,
cylindrical, spherical, etc. For simplicity, we will use a rectangular
grid as the base grid, which is the most common case. The O-buffer
can be either 2D or 3D. The number of samples in every grid cell
of an O-buffer can be the same or different. In order to simplify the
presentation, we use the following terms: regular samples for sam-
ples on a regular grid; irregular samples for unorganized samples;
offset samples for samples whose positions are recorded by offsets
to a regular base grid; uniform O-buffers where the number of offset
samples stored in every grid cell of the O-buffer is the same; and
nonuniform O-buffers where the number of offset samples stored in
the grid cells may vary across the O-buffer. The regular grid can
also be adaptive [Frisken et al. 2000], where the O-buffer is called
an adaptive O-buffer.

We use the 2D O-buffer (offset image) to demonstrate the O-
buffer concept in this section. The extension to the 3D case (offset
volume) is straightforward. Figure 1 shows a small portion of a 2D
uniform, nonuniform, and adaptive O-buffer.

(a) (b) (c)

u u
vv

Figure 1: (a) A uniform O-buffer; (b) A nonuniform O-buffer; (c)
An adaptive O-buffer.

2.1 Offset Quantization
By using the O-buffer, we can record the position of a sample point
much more precisely than a conventional image with the same res-
olution. The offset can be recorded by using two floating point
numbers which represent the offsets along two axes of the image
coordinates. However, in most cases, a floating point number is an
overkill. Usually, the offset can be quantized into one or two bytes
for compact representation and efficient rendering. With a one byte
offset, the offset is quantized into 16 levels in each axis. With a two
byte offset, the offset is quantized into 256 levels in each axis.

We find that one-byte offset is useful in practice. First, one-byte
offset for every pixel does not increase much the storage require-
ment for an image. A typical depth pixel needs 7 bytes (3 bytes for
color, 4 bytes for depth). Therefore, one-byte offset is only 12.5%
of the storage requirement for the O-buffer. Second, one-byte offset
can provide reasonable spatial precision. Suppose the 2D base grid
is 512 × 512. O-buffers with one-byte offset can provide spatial
precision for sample points just as that of a grid of 8192 × 8192.
We find that this is usually good enough for many applications. It
can reduce the position error to be less than 1/32 pixel distance in

each direction in the image plane. Figure 2 shows the error caused
by the quantization. Suppose the projection of a point P is quan-
tized into one of the 16 × 16 = 256 subpixels. Let the distance
between this point P and its quantized point P′ in the image plane
be m. Then m should be less than half the diagonal length of a sub-
pixel (m ≤

√
2/32 pixel). When we warp the image to a new image

plane the error caused by the quantization is n, which is actually
the projection of the 3D line PP′ onto the new image plane. From
another point of view, n/m represents the zoom factor of the line
PP′ from camera C1 to camera C2. If the zoom factor around the
pixel P is f , then the error caused by the quantization is less than√

2 f /32. This means that even when the zoom factor is 10, which
is unusual in practice, the error caused by the quantization is still
less than half a pixel.

C1

C2m

n

P P

Figure 2: The error caused by the quantization of the offset. m is
the quantization error at the O-buffer. n is the quantization error
caused by warping this O-buffer to a new image plane.

By using quantization, O-buffers can achieve substantial savings
of storage for irregular samples compared with conventional images
and volumes. Suppose a uniform O-buffer has a base grid of 512
× 512. For each cell, a one-byte attribute value as well as a one-
byte offset value are stored. The total storage requirement is 0.5MB
(512 × 512 × 2). If we use a high-resolution buffer to store these
samples, we need 64MB (512 × 16 × 512 × 16) to achieve the
same spatial precisions as that provided by the O-buffer.

2.2 Nonuniform O-Buffers
Nonuniform O-buffers provide more flexibility than uniform ones,
thus may be more useful in some applications. However, the data
structures for a uniform O-buffer and a nonuniform O-buffer are
different. For a uniform O-buffer, we can use the same data struc-
ture as a conventional image or volume, which is just a 2D or 3D
array of offset samples.

We propose two data structures for nonuniform O-buffers. Dur-
ing the construction stage of an O-buffer, it is more important to
efficiently insert and delete offset samples. Therefore, we use a 2D
or 3D array of linked offset sample lists to store O-buffers. During
the rendering stage, it is more important to maintain spatial local-
ity of offset samples in order to most effectively take advantage of
CPU cache coherency. We can reorganize the offset samples into a
linear array ordered bottom up and left to right in the image space.
We calculate the location of the beginning of each scanline in this
array and store them into a 1D array. Within each scanline, for each
cell location, we store the offset from that location to the beginning
of the scanline. We then use a double array of offsets to locate each
offset sample. In order to find offset samples stored at a specific
cell, we can simply use one offset to find the beginning of the scan-
line and then further use another offset to find the first offset sample
at that location. This data structure is somewhat similar to the one
proposed by Shade et al. [1998] for layered depth images. For an
adaptive O-buffer, we can use a quadtree or octree structure.

3 Conversion to O-Buffers

Other typical computer graphics primitives such as triangle meshes,
images, points, and volumes can be converted into O-buffers. A
major motivation of converting other primitives to O-buffers is for
hybrid rendering. After the conversion, we only need to render one
primitive whose rendering can then be highly optimized and can
even be realized in hardware. Also, we can determine the visibil-
ity of samples in a 3D O-buffer very easily. Therefore, different
samples can be rendered and composited in correct visibility order,
which is critical especially for volume rendering.

The conversion algorithms for uniform O-buffers and nonuni-
form O-buffers are different. When we convert other models to a
uniform O-buffer, we want to minimize the error between the origi-
nal model and the O-buffer, given a predetermined resolution for the
O-buffer. When we convert other models to a nonuniform O-buffer,
we want to minimize the number of samples in the O-buffer, given
a predetermined error between the original model and the O-buffer.

Regular volumes can be treated as special 3D O-buffers with zero
offsets. Converting depth images to O-buffers can be achieved by
first converting depth images into triangle meshes and then con-
verting triangle meshes into O-buffers. In this section, we focus on
converting triangle meshes and irregular samples to O-buffers.

3.1 Triangle Meshes
Discretizing triangle meshes is an important research topic for
sample-based graphics. Available solutions such as ray tracing
[Grossman and Dally 1998; Lischinski and Rappoport 1998; Pfister
et al. 2000] and scan conversion [Kaufman 1987] usually convert
triangle meshes to samples on a regular grid. Other methods [Chen
and Nguyen 2001; Cohen et al. 2001; Rusinkiewicz and Levoy
2000] convert triangle meshes to irregular point samples.

A

B

a

b

c

d

e

r

Figure 3: Conversion of a triangle mesh into an O-buffer. The small
green circles represent vertices of a triangle mesh. The red squares
represent offset samples in the corresponding O-buffer. The big
blue circles are Poisson disks.

We develop a grid-based vertex clustering algorithm which can
convert triangle meshes into a 3D uniform O-buffer in linear time.
Figure 3 shows our method. The algorithm consists of three steps:
First, we project all vertices of the triangles to the base grid of an
O-buffer and scan all triangles. We mark all cells which the triangle
mesh passes through. Second, we compute a representative sample
for each marked cell. For each cell with vertices falling into it such
as cell A in Figure 3, we perform vertex clustering and compute the
position of the representative sample by the quadric error metrics
[Garland and Heckbert 1997; Lindstrom 2000]. For each cell with-
out vertices falling into it such as cell B in Figure 3, we still need
to compute one representative sample in order to avoid holes in the
O-buffer representation. We can get the triangles passing through
the cell and compute the position of the representative sample so as

to minimize the distance from this sample to all triangle surfaces
in this cell. Because the offset is quantized, the possible positions
for the representative sample are limited. However, there still may
be more than one possible position. For example, in Figure 3, any
position along the segment of line ad in cell B may minimize the
distance. We then use a Poisson disk technique [Mao 1996] to pick
up the final position for the sample so that the distance from this
sample to neighboring offset samples is not less than a threshold.
Figure 3 shows Poisson disks with radius r. The final position of
the offset sample in cell B must be outside the Poisson disks of
its neighboring offset samples. The radius r can be decided on by
trial and error. We start from a large number and then gradually
reduce it until some position is available for the offset sample in the
cell. By this way, we can both minimize the error and guarantee the
uniformity of overall sample distribution. Finally, we convert the
representative samples into offset samples, quantize the offset, and
organize them into the O-buffer.

For nonuniform and adaptive O-buffers, we can first convert tri-
angle meshes to uniform O-buffers using the method described be-
fore. Then, for each cell of the base grid, we compute the error be-
tween the representative sample and the original model. If the error
is less than a predefined threshold, conversion for this cell is done.
Otherwise, we subdivide this cell into subcells, compute a repre-
sentative sample for each subcell, and compute the error again. We
repeat this process until the predefined error threshold is satisfied.
We can accelerate this process by using the normal error metrics
proposed by Brodsky and Watson [Brodsky and Watson 2000] to
directly decide if a cell needs to be subdivided without computing
a representative sample first.

3.2 Irregular Samples

Irregular samples are abundant in computer graphics. One typical
example is point clouds from 3D range scanners. Using O-buffers
to organize irregular samples is straightforward. After a base grid is
selected, irregular samples are then projected to 2D/3D space, and
their offsets to the base grid are quantized.

In the remainder of this section, we compare the O-buffer with
two other data structures developed to organize irregular samples:
quadtree/octree and QSplat [Rusinkiewicz and Levoy 2000]. Fig-
ure 4 shows the comparison in 2D. Figure 4a shows some irregular
samples we want to organize. There are different ways to encode
these samples with the same spatial precision. Figure 4b uses a
high-resolution buffer, which is sparse and wasteful. The buffer can
be compressed by using a quadtree as in Figure 4c. Figure 4e shows
a uniform O-buffer to organize these samples. For the quadtree rep-
resentation to achieve the same spatial precision as the O-buffer, the
depth of the quadtree needs to be higher.

Figure 4d shows a QSplat representation. QSplat also uses rel-
ative offsets from base positions to record the position of samples.
However, the base positions of QSplat is a hierarchy of bounding
spheres. Each node of the tree contains the sphere center and ra-
dius. The position and radius of each sphere is encoded relative
to its parent in the bounding sphere hierarchy. QSplat is efficient
to encode a very large number of nonuniform point samples in a
hierarchy. However, QSplat needs more effort to establish initial
clusters and build the tree. Compared to QSplat, the base positions
of the O-buffer are on a regular grid. This makes construction and
rendering of the O-buffer easier and faster. Therefore, the O-buffer
is a more efficient representation for relatively uniform samples and
for certain applications that need construction on the fly.

(d) (e)

(c)(b)(a)

Figure 4: Different ways to organize samples with the same spatial
precision: (a) Some samples; (b) A 16× 16 uniform buffer; (c) A
quadtree with a depth of 5; (d) Bounding spheres used in QSplat.
(e) A 2×2 O-buffer. Each grid cell contains two offset samples.

4 Rendering of O-Buffers

There are two basic methods to render the O-buffer: either by splat-
ting or by ray tracing. Considerable speedup can be gained for these
two methods by exploiting the semi-regular structure of O-buffers
and the quantization of offsets.

Splatting is an object order approach and memory coherence of
data can be exploited. Incremental computation has been used to
speed up the rendering of samples on a regular grid [Grossman and
Dally 1998; McMillan 1997]. O-buffers with quantized offset can
also be rendered rather efficiently by using incremental computa-
tion and lookup tables [Popescu and Lastra 1999; Qu et al. 2000].

Splatting consists of two steps: warping samples to the image
plane followed by reconstruction and resampling. There are several
ways [Grossman and Dally 1998; McMillan 1997] to warp samples
in depth images and volumes to a new image plane. In this paper,
we base our presentation on a method and notation proposed by
Shade et al. [1998]. We use 2D O-buffers (i.e., offset images) to
demonstrate our method. Let T be the 4×4 matrix to transform
a point from an offset image plane to a destination image plane,
and (x1,y1,z1,1) be the homogeneous coordinates of samples in
the offset depth image. Then, the warped sample position at the
destination image plane can be computed by:

T

x1
y1
z1
1

= T

x1
y1
0
1

+ z1T

0
0
1
0

= start+ z1.depth (1)

To compute the position of the next sample along the same scan-
line, start can be simply incremented. For the O-buffer, the next
sample along the same scan line is (x1 + 1 + u,y1 + v,0,1), where
(u,v) is the offset of this sample. If the offset is quantized to one
byte we can precompute T

[

u,v,0,0
]

for all possible levels of the
offset (256 levels in our case) and store them in one lookup table,
table. Before rendering a new image, we use the new camera infor-
mation to precompute the lookup table indices. Then, we can use
incremental computation:

T

x1 +1+u
y1 + v

0
1

= T

x1
y1
0
1

+T

1
0
0
0

+T

u
v
0
0

= start+xincr+ table[u,v] (2)

Compared to regular images, there is only a slight increase in the
rendering time for O-buffers. After projecting these samples to the
image plane, we need to reconstruct and resample. This has been
a well studied problem in the literature [Mark et al. 1997; Zwicker
et al. 2001].

Ray tracing can generate high quality images and is the best
method for global illumination. O-buffers have some advantages
over other sample-based models for ray tracing. First, the semi-
regular structure of the O-buffer lends itself well to a grid-based
ray traversal acceleration method. Second, locating the neighboring
samples for a sampling point along a ray is trivial. A look-up table
can be used to accelerate the calculation of the distance between the
sampling points and the O-buffer samples. Third, the quantization
of offsets can avoid many floating point arithmetic operations.

5 Hierarchical O-Buffers

Multi-resolution is a core technology in computer graphics for man-
aging the complexity of models. O-buffers open the possibility to
develop more accurate and flexible multi-resolution representations
for regular images and volumes. Hierarchical O-buffers can be di-
vided into two categories: hierarchical uniform O-buffers and hier-
archical nonuniform O-buffers. Figure 5 shows a hierarchical uni-
form O-buffer and a hierarchical nonuniform O-buffer, both in 2D.

The O-buffers provide the flexibility for the number and posi-
tion of samples in low resolution O-buffers. How to compute the
number and position of samples is based on the application. In this
section, we present an algorithm which can generate more accurate
low resolution offset images for regular or depth images.

(a) (b)

Figure 5: Hierarchical O-buffers: (a) A hierarchical uniform O-
buffer; (b) A hierarchical nonuniform O-buffer.

The conventional way to generate low-resolution images is to
downsample the data by some low-pass filter and store the result
in a regular grid. Instead, our algorithm first convert the original
image to a triangle mesh with color or geometry attributes. Then,
we collapse every four neighboring vertices into one based on some
triangle mesh simplification method such as the quadric error met-
rics [Garland and Heckbert 1998; Hoppe 1999] which can preserve
color or geometry attributes of the mesh. After that, the position and
color of new vertices are stored in a low-resolution offset image.
This framework can be extended to 3D volumes. Similarly, a regu-
lar volume can be first converted into a tetrahedra mesh. Then, we
use a tetrahedra mesh simplification method [Cignoni et al. 2000]
to simplify this mesh until only one vertex left for each cell in the
regular grid of the low resolution 3D O-buffer.

6 Layered Depth O-Buffers

The layered depth image (LDI) proposed by Shade et al. [1998]
is an important extension to the depth image. It provides the in-
formation for the occluded parts of an object. The representation
is compact compared to multiple images because LDI reduces the
redundancy in multiple images.

Having multiple depth images, an LDI can be constructed by
warping these depth images into a common camera view. As Shade
et al. [1998] pointed out, there are some disadvantages to the LDI.
First, pixels undergo two resampling steps in their journey from
input image to output. This can potentially degrade image quality.
Second, some information in the original images can be lost if a
surface is better sampled in one of the images than it is from the
viewpoint of the LDI. Chang et al. [1999] proposed LDI tree to
solve the problem caused by different sampling rates in the original
images.

C2

C1
LDI Camera

P1
P2

C2

C1
LDI Camera

P1
P2

P3
P4

(a) (b)

Figure 6: (a) multiple resampling problems of the LDI. When the
image taken at camera C2 is warped to the LDI camera, a resam-
pling is needed (P2 is resampled from the image taken at C2). Dur-
ing the rendering stage, these resampled pixels are warped to the
output image and are needed to be resampled again. (b) Different
sampling rates in the original images. Part of the surface is better
sampled at the image taken from C2 than at the image taken from
the LDI camera.

We introduce a layered depth O-buffer (LDOB) as an extension
of the LDI to overcome these two disadvantages. Figure 6a demon-
strates the two resampling steps of the LDI. When we warp the
depth images to the LDI camera position, the pixels do not fall on
a regular grid. Therefore, resampling is needed at the construction
stage of the LDI. During the rendering stage, the LDIs are warped
to an image plane. At this time, another resampling is needed. We
think that the resampling at the construction stage of the LDI is
unneccesary because the LDI is just an intermediate representation
and is not used for display. Therefore, this resampling can be de-
layed to the rendering stage with the help of an O-buffer. When we
warp an image to the viewpoint of the LDI we use an O-buffer to
record the position of these pixels in the LDI instead of resampling
the warped image. Thus, we avoid the two resampling problem.

Figure 6b demonstrates the different sampling rates problem. If
the original depth image resolutions are different, then a surface
can be better sampled at the original image which has a higher res-
olution than the LDI image. Even if the resolutions of the original
images and LDI are the same, a surface can still be better sampled
at some image other than the LDI because of the orientation of the
surface.

We propose a two step warping algorithm to preserve all the in-
formation in the original images. The LDOB is still constructed by
warping the depth images one by one to the LDOB camera position.
However, before we warp a depth image to the LDOB, we first try to

reconstruct this depth image from current LDOB by warping pixels
in the LDOB to the image plane of this depth image. Only pixels
in the original depth image which cannot be reconstructed from the
LDOB are warped and stored into the LDOB. These pixels either
represent new surfaces or surfaces which cannot be sampled well in
the LDOB.

We first select the viewpoint of one image as the viewpoint of
the LDOB and use that image as the initial LDOB. At that time, the
LDOB is simply a one layered image with zero offset for each pixel.
Then, we sort the depth images based on the angle of the camera of
the depth images and the camera of the LDOB. At the first warping
step, we warp the LDOB to one original image with the minimum
angle and mark the pixels which are sampled in this original image
but not well sampled in the LDOB. If no pixels in the LDOB are
warped to a pixel in the original image we think this pixel is not well
sampled in the LDOB and is marked. In some cases, even though
some pixel in the LDOB is warped into a pixel in the original im-
age but their depth or color differences are beyond a threshold, this
pixel is still marked as a not-well-sampled pixel. Then, at the sec-
ond warping step, we warp these marked pixels in the neighboring
images to the LDOB and record their positions with the O-buffer
and construct the new LDOB. We repeat this process until all im-
ages are warped. We use Figure 6b to illustrate our algorithm. We
pick up C1 as the LDOB camera position. At the first warping step,
we warp pixels in the LDOB to the image plane of camera C2. In
this example, there are pixels from the LDOB falling into pixels P1
and P4 in the image from C2 and their depth and color differences
are less than a threshold. Thus, P1 and P4 are already well sampled
in the current LDOB but P2 and P3 are not. At the second warping
step, we warp P2 and P3 from camera position C2 to the LDOB. In-
stead of resampling, we use offsets to record their precise positions
in the image plane of the LDOB.

If the original images have dramatically different resolutions, we
can combine an LDI tree [Chang et al. 1999] and an LDOB to de-
velop a hierarchical LDOB tree. The LDOB tree has the identical
structure as the LDI tree. The only difference is that for each cell
in the hierarchy an LDOB instead of an LDI is stored. Compared
with the LDI tree, the LDOB tree can avoid resampling and pro-
vide better reconstruction by storing more spatial information with
samples.

7 Hybrid Rendering with O-Buffers

Volumetric data constructed from CT and MRI scans are widely
used in medical virtual systems and they are usually rendered using
volume rendering. With the increasing requirement for more realis-
tic simulations, hybrid volume rendering becomes more important.
For example, some medical operations involve penetrating the hu-
man organ with a medical devices such as a scalpel or implanting
a device such as a pace maker. These objects may be modeled by
different computer graphics primitives. The human body is usually
modeled by volumetric data constructed from the CT or MRI scans.
The medical devices can be modeled by polygonal, point-based or
image-based models. These models need to be mixed in the same
scene in the medical virtual system. Another example for hybrid
volume rendering is a polygonal plane flying through a volumetric
cloud over an image-based terrain.

Hybrid volume rendering is a challenging problem. All primi-
tives in a scene must be drawn and mixed in topologically depth
sorted order because compositing with the over operator for volume
rendering is not commutative [Kreeger and Kaufman 1999]. Hybrid
volume rendering methods can be categorized into two classes: all
primitives can either be rendered and mixed separately or they can
be first converted and mixed into a common primitive. As we men-
tioned before, if we first convert all primitives in a scene into one
common primitive, we only need to render one primitive whose

rendering can then be highly optimized and can even be imple-
mented in hardware. Handling only one primitive makes hardware
unit small and thus more efficient. This approach is used in cur-
rent graphics boards which convert all geometric models into tri-
angles first so only one primitive is really processed by hardware.
Therefore, we believe that converting all primitives into one com-
mon primitive first has its advantages and may be a starting point to
design hardware for hybrid volume rendering.

The O-buffer provides a unified framework for hybrid render-
ing because various primitives (e.g., triangle meshes, points, depth
images, volumes) can all be converted into O-buffers which pro-
vide high spatial precision for samples and avoid unnecessary re-
sampling. If these primitives have no relative motion, they can be
premixed into one 3D nonuniform O-buffer. The O-buffer can eas-
ily solve the visibility order for these samples. Thus, blending and
compositing of different objects can be handled elegantly by ren-
dering the samples in the O-buffer from back to front. Another ma-
jor advantage of the O-buffer is that when multiple samples from
different models occupy the same cell of the 3D space, the redun-
dancy can be reduced by only storing one sample based on some
predetermined overlapping rules.

There are other ways to mix triangle meshes, images, points,
and volumes. For example, these objects can be separately warped
and z-buffers can be used to solve the visibility. One problem with
this approach is that it is inefficient to blend multiple transparent
objects. These objects have to be sliced into slabs in the depth di-
rection and special attention must be paid to guarantee that slabs
from different primitives in the similar depth zone are rendered and
mixed together. Another approach is to organize all these objects in
an octree-based structure which can be then splatted from back to
forth. This approach is similar to our method. However, O-buffers
are more compact and can be warped faster than sample lists orga-
nized as an octree.

8 Experimental Results

All our experimental results with O-buffers have been generated on
a Dell Dimension 8200 desktop with a 2.53GHz Pentium 4 CPU,
1GB of RAM, and an Nvidia GeForce4 graphics board with 64MB
memory. Figure 7 shows the image of a uniform O-buffer model
which in turn was converted from the Stanford Buddha using the
method presented in Section 3.1. The image resolution is 512 ×
512. The original triangle mesh model has 543,652 vertices and
1,087,716 triangular faces. The data has been converted to a 512
× 512 × 512 uniform O-buffer. It takes about 23 seconds for the
conversion after the data is loaded into memory and 0.05 seconds
for rendering by projecting OpenGL points. The conversion can be
done once as a preprocessing. The average error measured as the
distance from the offset samples to the triangle mesh is 0.08 grid
unit. The maximum error is 0.13 grid unit. The number of total
offset samples is 529,179.

Our next two experiments demonstrate that the image quality can
be improved by storing more spatial information with samples. Fig-
ure 8 shows an example of using the O-buffer to preserve the ge-
ometry in a depth image of the Stanford dragon. We first generated
a depth image of the model. The image resolution is 1024 × 1024
(see Figure 8a). Figure 8b shows a portion of the image. We con-
structed a low-resolution 256 × 256 image by box filtering the orig-
inal image. Figure 8d shows a portion of the regular low resolution
image, where the edges are smoothed out. Then, we convert the
depth image to a triangle mesh and generate a low resolution 256 ×
256 uniform O-buffer using the mesh simplification method based
on quadric error metrics [Garland and Heckbert 1997; Lindstrom
2000] (see Section 5) . Figure 8c shows a portion of the O-buffer
image, where the edges are better preserved.

Figure 7: An image of an O-buffer model converted from a triangle
mesh.

(a)

(c)

(b)

(d)

Figure 8: More accurate multiresolution with an O-buffer: (a) A
depth image of the dragon; (b) A portion of image (a); (c) An image
of a low resolution O-buffer; (d) A low resolution regular image.

Figure 9 demonstrates the advantages of the LDOB. We use a
curved checkerboard for the experiment. We rendered seven depth
images of the checkerboard from different camera positions around
the object. The resolution for each image is 512 × 512. These seven
images have a total of 673,993 non-background pixels. Then, we
assemble an LDI and an LDOB, separately. The LDI has 102,362
non-background pixels while the LDOB has 210,855. Both LDI
and LDOB can reduce the redundancy of the original images. How-
ever, LDOB keeps more samples from original images for surfaces
which are not well sampled from the camera of the LDI. Figure 9a
shows the image from the viewpoint of the LDI camera. The red
quadrilateral region is not well sampled from this viewpoint. Fig-
ure 9b shows a portion of the image rendered by warping the LDI
back to one of the original images which has a better sampling rate
for the red quadrilateral region. In order to avoid holes, a large splat
size has to be used and the image is therefore blurred compared to
the original image. However, if the LDOB is used, we can keep the
samples from the original images. When we warp the LDOB back,
we still have enough sampling rate and the final image is still sharp.

(a)

(b)

(c)

Figure 9: Improving image quality with an LDOB: (a) A curved
checkerboard; (b) An image rendered by warping an LDI; (c) An
image rendered by warping an LDOB.

Because the O-buffer is used to avoid multiple resampling, the im-
age has almost the same quality as the original image (see Figure
9c). It takes 0.13 seconds to render the LDI and 0.15 seconds to
render the LDOB. The LDOB has more samples to warp. However,
resampling is faster for the LDOB because the LDI has to use a
larger splat size than the LDOB. If we do not use quantization and
incremental warping, the time to render the LDOB is 0.19 seconds.
Thus, compared with the sample list representation, the O-buffer
can gain more than 20 percent speedup for splatting.

We also obtained results for hybrid volume rendering with O-
buffers. Figure 10 shows an example which mixes a volumetric CT
lobster with an image-based skeleton hand. The resolution of the
lobster is 320 × 320 × 34. The image-based human hand consists
of six 512 × 512 depth images which were generated by rendering
a geometric model from the stereolithography archive at Clemson
university. These images were projected to 3D space and combined
with the lobster into a 3D O-buffer. Then, the 3D O-buffer was
rendered by volume splatting. The rendering time is 1.2 seconds. It
can be seen that these two primitives are blended nicely.

9 Conclusions and Ongoing Work

Our primary contribution in this paper has been the introduction of
the O-buffer – a novel uniform framework for modeling and render-
ing a variety of 2D and 3D sample-based primitives. The O-buffer
is a simple primitive, yet more flexible and powerful than a con-
ventional image or volume. It is an efficient representation, sup-
porting a much higher spatial precision for sampling points without
increasing the sampling rate or resolution. Image quality is fur-
ther improved by avoiding multiple resamplings and delaying re-
construction to the final rendering stage. The O-buffer can also be
rendered efficiently by exploiting the semi-regular structure of O-
buffers and the quantization of offsets.

O-buffers have the potential to greatly improve the modeling
power of images and volumes. As a unified representation, the
O-buffer will be helpful to fill in the gaps among various sample-
based representations and finally, the gap between the geometry-
based approach and the sample-based approach. Given the signifi-
cant role that sample-based rendering is playing in computer graph-
ics, O-buffers will be very useful and have a high potential for both
modeling and rendering. It will have an impact on real time ren-

Figure 10: Mixing a volumetric lobster with an image-based hand
into one 3D O-buffer which is then rendered by splatting.

dering, level-of-detail management for samples, volume rendering,
and volume graphics.

We are currently exploring the use of O-buffers for feature-
preserving simplification, the conversion of volume data defined
on curvilinear or irregular grids into an O-buffer so that the many
efficient manipulation and rendering methods developed for regu-
lar volumes may be exploited. We also plan to design a hardware
protocol based on O-buffers for hybrid volume rendering.

Acknowledgments
This work is partially supported by ONR grant N000149710402
and NSF grant CCR0306438. The Buddha and Dragon models are
courtesy of Stanford University. The human hand model is cour-
tesy of Clemson University. We want to thank Michael Ashikhmin,
Manuel Menezes de Oliveira Neto, and Klaus Mueller for their
valuable comments on the early draft of this paper. We would like
to thank Susan Frank for proofreading the draft.

References
BOTSCH, M., WIRATANAYA, A., AND KOBBELT, L. 2002. Efficient high

quality rendering of point sampled geometry. Proceedings of Eurograph-
ics Rendering Workshop 2002, 53–64.

BRODSKY, D., AND WATSON, B. 2000. Model simplification through
refinement. Proceedings of Graphics Interface 2000, 221–228.

CARPENTER, L. 1984. The A-buffer, an antialiased hidden surface method.
Computer Graphics (Proceedings of ACM SIGGRAPH 84) 18, 3, 103–
108.

CHANG, C.-F., BISHOP, G., AND LASTRA, A. 1999. LDI tree: A hier-
archical representation for image-based rendering. Proceedings of ACM
SIGGRAPH 1999, 291–298.

CHEN, B., AND NGUYEN, M. X. 2001. POP: a hybrid point and polygon
rendering system for large data. Proceedings of IEEE Visualization 2001,
45–52.

CIGNONI, P., CONSTANZA, D., MONTANI, C., ROCCHINI, C., AND

SCOPIGNO, R. 2000. Simplification of tetrahedral meshes with accurate
error evaluation. Proceedings of IEEE Visualization 2000, 85–92.

COHEN, J. D., ALIAGA, D. G., AND ZHANG, W. 2001. Hybrid simpli-
fication: combining multi-resolution polygon and point rendering. Pro-
ceedings of IEEE Visualization 2001, 37–44.

FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A. P., AND JONES, T. R.
2000. Adaptively sampled distance fields: A general representation of
shape for computer graphics. Proceedings of ACM SIGGRAPH 2000,
249–254.

GARLAND, M., AND HECKBERT, P. 1997. Surface simplification using
quadric error metrics. Proceedings of ACM SIGGRAPH 1997, 209–215.

GARLAND, M., AND HECKBERT, P. S. 1998. Simplifying surfaces with
color and texture using quadric error metrics. Proceedings of IEEE Vi-
sualization 1998, 263–270.

GROSSMAN, J. P., AND DALLY, W. J. 1998. Point sample rendering.
Proceedings of Eurographics Rendering Workshop 1998, 181–192.

HOPPE, H. 1999. New quadric metric for simplifying meshes with appear-
ance attributes. Proceedings of IEEE Visualization 1999, 59–66.

KAUFMAN, A. 1987. An algorithm for 3D scan-conversion of polygons.
Proceedings of EUROGRAPHICS 1987, 197–208.

KREEGER, K., AND KAUFMAN, A. 1999. Hybrid volume and polygon ren-
dering with cube hardware. Proceedings of Eurographics/SIGGRAPH
Workshop on Graphics Hardware 1999, 15–24.

LINDSTROM, P. 2000. Out-of-core simplification of large polygonal mod-
els. Proceedings of ACM SIGGRAPH 2000, 259–262.

LISCHINSKI, D., AND RAPPOPORT, A. 1998. Image-based rendering for
non-diffuse synthetic scenes. Proceedings of Eurographics Rendering
Workshop 1998, 301–314.

MAO, X. 1996. Splatting of non rectilinear volumes through stochastic
resampling. IEEE Transactions on Visualization and Computer Graphics
2, 2, 156–170.

MARK, W. R., MCMILLAN, L., AND BISHOP, G. 1997. Post-rendering 3D
warping. Proceedings of Symposium on Interactive 3D Graphics 1997,
7–16.

MCMILLAN, L. 1997. An image-based approach to three-dimensional
computer graphics. Tech. Rep. TR97-013, Department of Computer Sci-
ence, University of North Carolina - Chapel Hill.

PFISTER, H., ZWICKER, M., VAN BAAR, J., AND GROSS, M. 2000. Sur-
fels: Surface elements as rendering primitives. Proceedings of ACM
SIGGRAPH 2000, 335–342.

POPESCU, V., AND LASTRA, A. 1999. High quality 3D image warping
by separating visibility from reconstruction. Tech. Rep. TR99-017, De-
partment of Computer Science, University of North Carolina - Chapel
Hill.

POPESCU, V., EYLES, J., LASTRA, A., STEINHURST, J., ENGLAND, N.,
AND NYLAND, L. 2000. The WarpEngine: An architecture for the
post-polygonal age. Proceedings of ACM SIGGRAPH 2000, 433–442.

QU, H., WAN, M., QIN, J., AND KAUFMAN, A. 2000. Image based
rendering with stable frame rates. Proceedings of IEEE Visualization
2000, 251–258.

RUSINKIEWICZ, S., AND LEVOY, M. 2000. Qsplat: A multiresolution
point rendering system for large meshes. Proceedings of ACM SIG-
GRAPH 2000, 343–352.

SCHILLING, A. 1991. A new simple and efficient antialiasing with subpixel
masks. Computer Graphics (Proceedings of ACM SIGGRAPH 91) 25, 4,
133–141.

SHADE, J., GORTLER, S. J., HE, L. W., AND SZELISKI, R. 1998. Layered
depth images. Proceedings of SIGGRAPH 1998, 231–242.

WESTOVER, L. 1990. Footprint evaluation for volume rendering. Computer
Graphics (Proceedings of ACM SIGGRAPH 90) 24, 4, 367–376.

ZWICKER, M., PFISTER, H., VAN BAAR, J., AND GROSS, M. 2001. Sur-
face splatting. Proceedings of ACM SIGGRAPH 2001, 371–378.

